In this article, a joint target assignment and resource optimization (JTARO) strategy is proposed for the application of multitarget tracking in phased array radar network system. The key mechanism of our proposed JTARO strategy is to employ the optimization technique to jointly optimize the target-to-radar assignment, revisit time control, bandwidth, and dwell time allocation subject to several resource constraints, while achieving better tracking accuracies of multiple targets and low probability of intercept (LPI) performance of phased array radar network. The analytical expression for Bayesian Cramér-Rao lower bound with the aforementioned adaptable parameters is calculated and subsequently adopted as the performance metric for multitarget tracking. After problem partition and reformulation, an efficient three-stage solution methodology is developed to resolve the underlying mixed-integer, nonlinear, and nonconvex optimization problem. To be specific, in Step 1, the revisit time for each target is determined. In Step 2, we implement the joint signal bandwidth and dwell time allocation for fixed target-to-radar assignments, which combine the cyclic minimization algorithm and interior point method. In Step 3, the optimal target-to-radar assignments are obtained, which results in the minimization of both the tracking accuracy for multiple targets and the total dwell time consumption of the network system. Simulation results are provided to demonstrate the advantages of the presented JTARO strategy, in terms of the achievable multitarget tracking accuracy and LPI performance of phased array radar network.
Read full abstract