BackgroundTrained immunity results in long-term immunological memory, provoking a faster and greater immune response when innate immune cells encounter a secondary, often heterologous, stimulus. We have previously shown that house dust mite (HDM)-induced innate training is amplified in mice expressing the human macrophage migration inhibitory factor (MIF) CATT7 functional polymorphism. AimThis study investigated the ability of mesenchymal stromal cells (MSCs) to modulate MIF-driven trained immunity both in vitro and in vivo. MethodsCompared with wild-type mice, in vivo HDM-primed bone marrow-derived macrophages (BMDMs) from CATT7 mice expressed significantly higher levels of M1-associated genes following lipopolysaccharide stimulation ex vivo. Co-cultures of CATT7 BMDMs with MSCs suppressed this HDM-primed effect, with tumor necrosis factor alpha (TNF-α) being significantly decreased in a cyclooxygenase 2 (COX-2)-dependent manner. Interestingly, interleukin 6 (IL-6) was suppressed by MSCs independently of COX-2. In an in vitro training assay, MSCs significantly abrogated the enhanced production of pro-inflammatory cytokines by HDM-trained CATT7 BMDMs when co-cultured at the time of HDM stimulus on day 0, displaying their therapeutic efficacy in modulating an overzealous human MIF-dependent immune response. Utilizing an in vivo model of HDM-induced trained immunity, MSCs administered systemically on day 10 and day 11 suppressed this trained phenomenon by significantly reducing TNF-α and reducing IL-6 and C-C motif chemokine ligand 17 (CCL17) production. ConclusionsThis novel study elucidates how MSCs can attenuate an MIF-driven, HDM-trained response in CATT7 mice in a model of allergic airway inflammation.
Read full abstract