Current models suggest the five regular moons of Uranus formed in a single stage from a primary planetary disk or a secondary impact disk. Using latest estimates of moon masses (Jacobson, 2014), we find a power-law relationship between size and density of the moons due to varying rock/ice ratios caused by fractionation processes. This relationship is better explained by mild enrichment of rock with respect to ice in the solids that aggregate to form the moons following Rayleigh law for distillation (Rayleigh, 1896) than by differential diffusion in the disk, although the two mechanisms are not exclusive. Rayleigh fractionation requires that moon composition and density reflect their order of formation in a closed-system circumplanetary disk. For Uranus, the largest and densest moons Titania and Oberon (R ∼ 788 and 761 km, respectively) first formed, then the mid-sized Umbriel and Ariel (585 and 579 km), satellites in each pair forming simultaneously with similar composition, and finally the small rock-depleted Miranda (236 km). Fractionation likely occurred through impact vaporization during planetesimal accretion. This mechanism would add to those affecting the composition of accreting planets and moons in disks such as temporal/spatial variation of disk composition due to temperature gradients, advection, and large impacts. In the outer solar nebula, Rayleigh fractionation may account for the separation of a rock-dominated reservoir, and an ice-dominated reservoir, currently represented by CI carbonaceous chondrite/type-C asteroids and comets, respectively. Potential consequences for Uranus moons' composition are discussed.
Read full abstract