Rice yield stability is a breeding goal, particularly for short-growth duration rice, but its underlying mechanisms remain unclear. In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice, a field experiment was conducted at three sites (Yueyang, Liuyang, and Hengyang) in 2021 and 2022. This study compared yield, yield components, source–sink characteristics, and their stability between two stable-yielding short-growth duration rice cultivars, Zhongzao 39 (Z-39) and Lingliangyou 268 (L-268), and two unstable-yielding short-growth duration rice cultivars, Zhongjiazao 17 (Z-17) and Zhuliangyou 819 (Z-819). The stability of agronomic parameters was represented by the coefficient of variation (CV). The respective CVs of yield in Z-17, Z-819, Z-39, and L-268 were 10.2%, 10.1%, 4.5%, and 5.7% in 2021 and 19.7%, 15.0%, 5.4%, and 6.5% in 2022. The respective CVs of grain weight were 6.3%, 5.7%, 3.4%, and 4.5% in Z-17, Z-819, Z-39, and L-268 in 2021, and 8.1%, 6.3%, 1.5%, and 0.8% in 2022. The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet (NSCpre) were 7%–43% and 7%–72% lower in Z-819 and Z-17 than in L-268 and Z-39 in 2021 and 2022. The mean quantum yield of photosystem II photochemistry of leaf, leaf area index, and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage. This study suggests that high NSCpre, caused by great leaf traits before heading, increases source capacity per spikelet and its stability, thereby increasing the stability of grain weight and yield. Increasing NSCpre is critical for achieving grain weight and yield stability in short-growth duration rice.