Chinese yam production is thriving in Aomori Prefecture, a cold and snowy region in Japan. Recently, there has been an increasing risk of nitrogen leaching in Chinese-yam fields, which consist of sandy soil, due to localized torrential rain. The relationships between the type of fertilizer used for Chinese-yam cultivation, the amount of nitrogen (N) leaching, and the timing of leaching remain unknown. Therefore, this study aimed to fill this knowledge gap by investigating the effects of different fertilizers (fast-acting and/or slow-release fertilizer) and irrigation practices (conventional and/or excessive irrigation) in order to mitigate the detrimental impact of nitrogen leaching on groundwater quality. An enhanced mathematical model and the spatiotemporal dynamics of inorganic nitrogen concentration in soil pore water were evaluated the negative impact of nitrogen leaching on the groundwater environment was evaluated. The results showed that the combined use of slow-release fertilizers could significantly reduce nitrate-nitrogen concentration in soil-water, especially during the harvest season. This study demonstrated that cultivating Chinese yam with a fertilizer application system that includes the use of slow-release fertilizer can diminish the negative impact of nitrogen leaching on the groundwater environment, contributing to our understanding of sustainable agricultural practices in regions facing similar environmental challenges. Therefore, our findings represent an important advancement providing new approaches to maintaining productivity while mitigating the adverse impacts on groundwater environments, as well as offering guidelines for agricultural practices in regions facing similar environmental challenges.
Read full abstract