AbstractGeographical distributions of waterfowl exhibit annual variation in response to spatiotemporal variation in weather conditions, habitat availability, and other factors. Continuing changes in climate and land use could lead to persistent shifts of waterfowl distributions, potentially causing a mismatch with habitat conservation planning, wetland restoration efforts, and harvest management decisions informed by historical distributions. We used band recoveries and harvest records (i.e., hunter‐harvested wings) from the United States Fish and Wildlife Service Waterfowl Parts Collection Survey as indices of duck distribution in autumn and winter, and quantified intra‐annual, interannual, and interspecific variation in their geographic distributions across 6 decades (1960–2019) for 15 duck species in the Central and Mississippi flyways in North America. Specifically, we tested for annual and decadal shifts in mean latitude and longitude of recoveries for each month (Oct–Jan) by species and taxonomic guild (i.e., dabbling, diving ducks). Overall, species varied in the extent, timing, and sometimes direction, of distributional change in recoveries. From 1960–2019, mean recovery locations for dabbling ducks shifted south 105–296 km in October and 27 km in November (wings only), whereas mean latitudes shifted north 144–234 km in December and 186–301 km in January. Mean recovery locations for diving ducks shifted north 162 km in October (wings only), 84–173 km in December, and 66–120 km in January, but shifted 99–512 km south in November. Shifts in longitude were less consistent between guilds and data types. Finally, distributional change rarely accelerated during recent decades, except for southward shifts of band recoveries of diving ducks in November and northward shifts of band and wing recoveries of dabbling ducks in January. Although anecdotal accounts of large‐scale northward shifts in duck distributions are prolific in the land management and hunting communities, our data demonstrate more subtle shifts that vary considerably by species and month. Observed changes in recovery distributions could necessitate changes in timing of habitat management practices throughout the Central and Mississippi flyways and may result in fewer hunting and recreational opportunities for some species in southern states. Quantifying patterns of historical change is a necessary first step to understanding temporal and interspecific variation in waterfowl distributions, which will help with landscape‐scale conservation and management efforts in the future and enable effective communication to core constituencies regarding ongoing changes and their implications for recreational engagement.