BackgroundCognitive impairment (CI) is now well-accepted as a complication and comorbidity of diabetes mellitus (DM), becoming a serious medical and social problem. Jiao-tai-wan (JTW), one of noted traditional Chinese medicine (TCM), showed dual therapeutic effects on DM and CI. Nevertheless, the potential mechanism is unclear. PurposeThis study sought to investigate the mechanism how JTW protected against DM and CI and screen the active component in JTW. MethodsDb/db mice were used as mouse models. Mice were treated by gavage with 0.9 % saline (0.1 mL/10g/d), low dose of JTW (2.4 g/kg/d) or high dose of JTW (4.8 g/kg/d) for 8 weeks separately. To access the effects of JTW, the levels of OGTT, HOMA-IR, blood lipids, inflammatory cytokines in serum and hippocampus were measured, behavioral tests were conducted, and histopathological changes were observed. The mechanism exploration was performed via network pharmacology, RT-qPCR, western blot, and immunofluorescence staining (IF). The impact and mechanism of coptisine in vitro were investigated using BV2 cells induced by LPS as cellular models. In vitro experiments were conducted in two parts. The first part comprised four groups: Control group, LPS group, LPS+LCOP group and LPS+HCOP group. The second part consisted of four groups: Control group, LPS group, LPS+HCOP group, and LPS+ Fed group. The western blot and RT-qPCR methods were used to examine the changes in biomarkers of the JAK2/STAT3 signaling pathways in BV2 cells. ResultsThe results demonstrated that JTW could improve OGTT and HOMA-IR, reduce the serum levels of LDL-C, HDL-C, TG, and TC, restore neuronal dysfunction and synaptic plasticity, and decrease the deposition of Aβ in the hippocampus. The findings from ELISA, IF, and RT-qPCR revealed that JTW could alleviate microglial activation and inflammatory status in vivo and coptisine could play the same role in vitro. Moreover, the changes of the JAK2/STAT3 signaling pathway in LPS-induced BV2 cells or hippocampus of db/db mice were distinctly reversed by coptisine or JTW, respectively. ConclusionOur study suggested that JTW and its effective component coptisine could alleviate diabetes mellitus-related cognitive impairment, closely linked to the JAK2/STAT3 signaling pathway.
Read full abstract