Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.
Read full abstract