Recent works by Chandrasekaran, Penington, and Witten have shown in various special contexts that the quantum-corrected Ryu-Takayanagi (RT) entropy (or its covariant Hubeny-Rangamani-Takayanagi (HRT) generalization) can be understood as computing an entropy on an algebra of bulk observables. These arguments do not rely on the existence of a local holographic dual field theory. We show that analogous-but-stronger results hold in any UV-completion of asymptotically anti-de Sitter quantum gravity with a Euclidean path integral satisfying a simple and (largely) familiar set of axioms. We consider a quantum context in which a standard Lorentz-signature classical bulk limit would have Cauchy slices with asymptotic boundaries BL ⊔ BR where both BL and BR are compact manifolds without boundary. Our main result is then that (the UV-completion of) the quantum gravity path integral defines type I von Neumann algebras ALBL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_L^{B_L} $$\\end{document}, ARBR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_R^{B_R} $$\\end{document} of observables acting respectively at BL, BR such that ALBL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_L^{B_L} $$\\end{document}, ARBR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_R^{B_R} $$\\end{document} are commutants. The path integral also defines entropies on ALBL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_L^{B_L} $$\\end{document}, ARBR\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal{A}}_R^{B_R} $$\\end{document}. Positivity of the Hilbert space inner product then turns out to require the entropy of any projection operator to be quantized in the form ln N for some N ∈ ℤ+ (unless it is infinite). As a result, our entropies can be written in terms of standard density matrices and standard Hilbert space traces. Furthermore, in appropriate semiclassical limits our entropies are computed by the RT-formula with quantum corrections. Our work thus provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. Since our axioms do not severely constrain UV bulk structures, it is plausible that they hold equally well for successful formulations of string field theory, spin-foam models, or any other approach to constructing a UV-complete theory of gravity.