BackgroundMost current whole-body positron emission tomography (PET) scanners use detectors with high timing resolution to measure the time-of-flight of two 511 keV photons, improving the signal-to-noise ratio of PET images. However, almost all current whole-body PET scanners use detectors without depth-encoding capability; therefore, their spatial resolution can be affected by the parallax effect.MethodsIn this work, four depth-encoding detectors consisting of LYSO arrays with crystals of 2.98 × 2.98 × 20 mm3, 2.98 × 2.98 × 30 mm3, 1.95 × 1.95 × 20 mm3, and 1.95 × 1.95 × 30 mm3, respectively, were read at both ends, with 6 × 6 mm2 silicon photomultiplier (SiPM) pixels in a 4 × 4 array being used. The timing signals of the detectors were processed individually using an ultrafast NINO application-specific integrated circuit (ASIC) to obtain good timing resolution. The 16 energy signals of the SiPM array were read using a row and column summing circuit to obtain four position-encoding energy signals.ResultsThe four PET detectors provided good flood histograms in which all crystals could be clearly resolved, the crystal energy resolutions measured being 10.2, 12.1, 11.4 and 11.7% full width at half maximum (FWHM), at an average crystal depth of interaction (DOI) resolution of 3.5, 3.9, 2.7, and 3.0 mm, respectively. The depth dependence of the timing of each SiPM was measured and corrected, the timing of the two SiPMs being used as the timing of the dual-ended readout detector. The four detectors provided coincidence time resolutions of 180, 214, 239, and 263 ps, respectively.ConclusionsThe timing resolution of the dual-ended readout PET detector was approximately 20% better than that of the single-ended readout detector using the same LYSO array, SiPM array, and readout electronics. The detectors developed in this work used long crystals with small cross-sections and provided good flood histograms, DOI, energy, and timing resolutions, suggesting that they could be used to develop whole-body PET scanners with high sensitivity, uniform high spatial resolution, and high timing resolution.
Read full abstract