Abstract Over 100 modifications to RNA are known to occur in human cells, where they play critical roles in many aspects of normal cellular physiology, such as cell fate decisions and terminal differentiation, through effects on RNA biology such as protein and nucleic acid interactions. Our survey of human RNA-modifying enzymes suggests many are cancer essential enzymes with striking synthetic lethal profiles, including the DHX9 helicase. DHX9 is a multifunctional DExH-box RNA helicase which can unwind regions of double-stranded DNA and RNA helices but has a greater propensity for secondary structures such as DNA/RNA hybrids (R-loops) and DNA/RNA G-quadruplexes. DHX9 interacts with and regulates many proteins, including key members of DNA damage repair pathways. We have found that DHX9 knockdown is synthetic lethal in microsatellite high (MSI-H) or defective mismatch repair (dMMR) tumor models. A suite of assays was developed to identify and optimize potent and selective inhibitors of the DHX9 helicase, which recapitulate our findings with genetic tools. Profiling of DHX9 inhibitors across a broad panel of cancer cell lines reveals that tumor cells with mutations in the DNA damage repair genes BRCA1 and/or BRCA2 are also responsive to DHX9 inhibitor treatment in vitro and in vivo. DHX9 inhibition leads to increased RNA/DNA secondary structures such as R-loops and G-quadruplexes, resulting in subsequent DNA damage and increased replication stress, leading to cell cycle arrest and apoptosis. These results suggest that DHX9 inhibitors are a novel treatment modality for patients with defective DNA damage repair pathways such as dMMR and/or BRCA mutations. Citation Format: Serena J Silver. Inhibitors of DHX9 RNA helicase as synthetic lethal cancer therapeutics [abstract]. In: Proceedings of the AACR Special Conference in Cancer Research: RNAs as Drivers, Targets, and Therapeutics in Cancer; 2024 Nov 14-17; Bellevue, Washington. Philadelphia (PA): AACR; Mol Cancer Ther 2024;23(11_Suppl):Abstract nr I003.
Read full abstract