Carbon ion beam irradiation (CIBI) is a highly efficient mutagenesis for generating mutations that can be used to expand germplasm resources and create superior new germplasm. The study investigated the effects of different doses of CIBI (50 Gy, 100 Gy, 150 Gy, 200 Gy and 300 Gy) on seed germination and seedling survival, seedling morphological and physiological traits of an elite centipedegrass cultivar Ganbei. The results showed that irradiation greater than 50 Gy cause inhibition of seed germination, and the semi-lethal dose (LD50) is around 90 Gy for CIBI treated seeds of Ganbei. A carbon ion beam-mutagenized centipedegrass population was generated from Ganbei, with irradiation dosages from 50 Gy to 200 Gy. More than ten types of phenotypic variations and novel mutants with heritable tendencies mainly including putative mutants of stolon number, length and diameter, of internode length, of leaf length and width, of leaf chlorophyll content, of stolon growth rate, of aboveground tissue dry weight, of sward height were identified. While the total sugar content of the plants from irradiated seeds showed no obvious change in all treatments as compared to the control, the crude protein content displayed significant reduction at a high-dose treatment of 200 Gy. Genetic polymorphism was detected in mutagenized centipedegrass population using SSR-PCR analysis, suggesting that CIBI caused alteration of larger fragments of the DNA sequence. As a result, a preliminary batch of mutants was screened in this study. In summary, carbon ion beam mutagenesis is an effective way for developing centipedegrass germplasm with wider variation, and treating seeds with CIBI at a dosage of ~100 Gy could be effective in centipedegrass mutation breeding.