Abstract Individually, extreme humid heat and extreme precipitation events can trigger widespread socioeconomic impacts which disproportionately affect vulnerable populations. These impacts might become greater when both events occur in close temporal proximity, for example if emergency responses to heat stress casualties are hindered by flooded roads. Improved understanding of the probabilities and physical mechanisms associated with these events’ temporal compounding might uncover causal interrelationships offering avenues for improving early warning systems and projecting changes in a warmer climate. We explore sequential humid heat and rainfall relationships during the local summer season, identifying two classes of temporal relationships. We find that high wet bulb temperature (WBT) anomalies in most mid- to high-latitude and tropical regions are preceded by anomalously low precipitation. In contrast, hot and dry subtropical regions generally experience elevated WBTs during and, to a somewhat lesser extent, before extreme precipitation events. High WBT events are followed by positive precipitation anomalies in many land regions.