A novel approach to producing corn stover biomass feedstock has been investigated. In this approach, corn grain and stover are co-harvested at moisture contents much less than typical corn silage. The grain and stover are conserved together by anaerobic storage and fermentation and then separated before end use. When separated from the stover, the moist, fermented grain had physical characteristics that differ from typical low-moisture, unfermented grain. A comprehensive study was conducted to quantify the physical properties of this moist, fermented grain. Six corn kernel treatments, either fermented or unfermented, having different moisture contents, were used. Moist, fermented kernels (26 and 36% w.b. moisture content) increased in size during storage. The fermented kernels’ widths and thicknesses were 10% and 15% greater, respectively, and their volume was 28% greater than the dry kernels (15% w.b.). Dry basis particle density was 9% less for moist, fermented kernels. Additionally, the dry basis bulk density was 29% less, and the dry basis hopper-discharged mass flow rate was 36% less. Moist, fermented grain had significantly greater kernel-to-kernel coefficients of friction and angles of repose compared to relatively dry grain. The friction coefficient on four different surfaces was also significantly greater for fermented kernels. Fermented corn kernels had lower individual kernel rupture strengths than unfermented kernels. These physical differences must be considered when designing material handling and processing systems for moist, fermented corn grain.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access