Abstract
Water is an essential factor in forming, utilization, management, and sustainability of peat soil. This study was to obtain characteristics of water retention and porosity of peat soil. Peat samples were taken from the Natural Laboratory of Peat Forest, Central Kalimantan at shallow, medium, and deep peat at 0-50cm (surface) and 50-100 cm (subsurface), while laboratory analyses carried out at Soil Laboratory, Universitas Gajahmada. The result shows that volumetric moisture content at the surface lower than subsurface, except for deep peat. The total pore for the surface was 84.67-86.98%, while subsurface layers were 83.53-86.93%. For surface layer, saturated degree (S) medium peat higher than shallow and deep peat, while for shallow subsurface peat higher than medium and deep peat. S value all pF levels of surface for medium and deep peat higher than the subsurface. Bulk density for surface was 0.094g.cm-3 (rb(wet)) and 0.22g.cm-3(rb (dry)) for shallow peat while medium peat are 0.084–0.087g.cm-3(rb(wet)) and 0.18–0.20g.cm-3(rb(dry)), deep peat 0.064–0.090g.cm-3(rb(wet)) and 0.11–0.16g.cm-3(rb(dry)). For subsurface, bulk density of medium peat are 0.094–0.107g.cm-3 (rb(wet)) and 0.16–0.20g.cm-3 (rb(dry)), deep peat are 0.067–0.090g.cm-3 (rb(wet)) and 0.10–0.17g.cm-3 (rb(wet)). The particle density of surface and subsurface for shallow peat higher than medium and deep peat, with values 0.67-0.77g.cm3, 0.61-0.66g.cm3, and 0.53-0.63g.cm3 for shallow, medium, and deep peat, respectively. Total pores for the surface layer decrease with increasing dry bulk density (R = 0.624) and particle density (R = 0.375). This fact seems to confirm a directly proportional relationship between parameters bulk and particle density with total pores.
Highlights
Water plays an essential role in forming, cultivation, utilization management, and sustainability of peat soil
Integrated water management is the key to restoring tropical peatland (Ritzema 1998; Sutikno et al 2020), in which diverse and contrasting requirements of the various types of land use need to be balanced
Water management to maintain levels optimal for distant land uses is crucial to achieving the wise use of tropical peatlands (Wösten and Ritzema 2001)
Summary
Water plays an essential role in forming, cultivation, utilization management, and sustainability of peat soil. Integrated water management is the key to restoring tropical peatland (Ritzema 1998; Sutikno et al 2020), in which diverse and contrasting requirements of the various types of land use need to be balanced. Water management to maintain levels optimal for distant land uses is crucial to achieving the wise use of tropical peatlands (Wösten and Ritzema 2001). Peatland was forming by the accumulation of organic material over a long time. The permanent waterlogging covered land surface caused the accumulation rate of organic material faster than their decomposition. Most tropical peat is located at low altitudes where rain forest vegetation grows on a thick mass
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.