The use of antimicrobial drugs in food-producing animals contributes to the selection pressure on pathogenic and commensal bacteria to become resistant. This study aims to evaluate the existence of trade-offs between treatment effectiveness, cost, and the dynamics of resistance in gut commensal bacteria. We developed a within-host ordinary differential equation model to track the dynamics of antimicrobial drug concentrations and bacterial populations in the site of infection (lung) and the gut. The model was parameterized to represent enrofloxacin treatment for bovine respiratory disease (BRD) caused by Pastereulla multocida in cattle. Three approved enrofloxacin dosing regimens were compared for their effects on resistance on P. multocida and commensal E. coli: 12.5 mg/kg and 7.5 mg/kg as a single dose, and 5 mg/kg as three doses. Additionally, we explored non-FDA-approved regimes. Our results indicated that both 12.5 mg/kg and 7.5 mg/kg as a single dose scenario increased the most the treatment costs and prevalence of P. multocida resistance in the lungs, while 5 mg/kg as three doses increased resistance in commensal E. coli bacteria in the gut the most out of the approved scenarios. A proposed non-FDA-approved scenario (7.5 mg/kg, two doses 24 h apart) showed low economic costs, minimal P. multocida, and moderate effects on resistant E. coli. Overall, the scenarios that decrease P. multocida, including resistant P. multocida did not coincide with those that decrease resistant E. coli the most, suggesting a trade-off between both outcomes. The sensitivity analysis suggests that bacterial populations were the most sensitive to drug conversion factors into plasma (β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\beta}$$\\end{document}), elimination of the drug from the colon (ϑ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\vartheta$$\\end{document}), fifty percent sensitive bacteria (P. multocida) killing effect (Ls50\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext{L}}_{\ ext{s50}}$$\\end{document}), fifty percent of bacteria (E. coli) above ECOFF killing effect (Cr50\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext{C}}_{\ ext{r50}}$$\\end{document}), and net drug transfer rate in the lung (γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma$$\\end{document}) parameters.
Read full abstract