The capture of neutrally buoyant, sub-Kolmogorov particles at the interface of deformable drops in turbulent flow and the subsequent evolution of particle surface distribution are investigated. Direct numerical simulation of turbulence, phase-field modelling of the drop interface dynamics and Lagrangian particle tracking are used. Particle distribution is obtained considering excluded-volume interactions, i.e. by enforcing particle collisions. Particles are initially dispersed in the carrier flow and are driven in time towards the surface of the drops by jet-like turbulent fluid motions. Once captured by the interfacial forces, particles disperse on the surface. Excluded-volume interactions bring particles into long-term trapping regions where the average surface velocity divergence sampled by the particles is zero. These regions correlate well with portions of the interface characterized by higher-than-mean curvature, indicating that modifications of the surface tension induced by the presence of very small particles will be stronger in the highly convex regions of the interface.
Read full abstract