Road safety concerns have spurred the development of innovative technologies aimed at reducing accidents, particularly those caused by driver fatigue. The main scope of the driver drowsiness detection system is to minimize road accidents caused by fatigue or sleepiness of drivers. This system leverages deep learning and computer vision, employing a Raspberry Pi camera to monitor facial expressions, including yawning, to assess the driver's alertness. Upon detecting signs of drowsiness, such as prolonged eye closure or altered facial expressions, the system triggers a buzzer alert by analyzing the Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR) ratios. Integrated within an embedded system, it utilizes frontal face detection algorithms and Haar cascade classifiers to localize key facial features in real-time, facilitating efficient monitoring for signs of fatigue or distraction. Additionally, it issues vibration alerts if the seat belt is not fastened. The seat belt remainder will be helpful to ensure the safety of the driver, reduces accidents and monitors the driver's heart rate, triggering a PANIC message if irregularities are detected. At traffic signals, the system automatically reduces vehicle speed using a vibration motor. In the unfortunate event of an accident, the system initiates speed reduction and promptly notifies registered contacts through the Blynk application, thereby significantly reducing accidents caused by drowsy driving.
Read full abstract