Nitrogen (N) and phosphorus (P) addition, either individually or in combination, has been demonstrated to enhance plant productivity in grassland ecosystems. Soil bacterial community, which is the driver of litter decomposition and nutrient cycling, is assumed to control responses of terrestrial ecosystem structure and function to N and P addition. Using a high-throughput Illumina MiSeq sequencing platform, we conducted a 9-year field experiment of N (0, 5, 10, and 20 g N m-2 yr-1) and P (0 and 10 g P m-2 yr-1) additions in the Inner Mongolian steppes to elucidate long-term effects of N and P addition on soil bacterial richness, diversity and composition. We found that N addition reduced the relative abundance of Acidobacteria, Chloroflexi, and Nitrospirae, while increased that of Bacteroides. The results showed that the bacterial biomarker was enriched in P addition treatments, either individually or combined with N addition. Both N and P addition altered the bacterial community structure, while only N addition greatly decreased bacterial richness and diversity. More importantly, we showed that all of these effects were most significant in N3P treatment (20 g N m-2 yr-1 and 10 g P m-2 yr-1), implying that P coupled with a high-level N addition exerted a great influence on soil bacterial community. Structural equation models revealed that N and P addition had a great direct effect on soil bacterial community and an indirect effect on it mainly by changing the litter biomass. Our findings highlighted that severe niche differentiation was induced by P along with a high-level N, further emphasizing the importance of simultaneously evaluating response of soil bacterial community to N and P addition, especially in the context of increasing anthropogenic nutrient additions.
Read full abstract