Digital twins seek to replicate a physical structure in a digital domain. For a digital twin to have close correspondence to its physical twin, data are required. However, it is not always possible, or cost-effective, to collect a complete set of data for a structure in all configurations of interest. It is nonetheless useful to repurpose data to help validate predictions for different configurations and scenarios. This statement is true in drilling applications, where, for example, the length of the drill string is altered throughout operation. This paper demonstrates how transfer learning, in the form of three domain-adaptation methods, — transfer component analysis (TCA), maximum independence domain adaptation (MIDA) and geodesic flow kernel (GFK) — can be used to construct a digital twin for localising torsional friction in deviated wells under structural changes (e.g., when the drill column gets longer). The method uses a physics-based torsional model to train a machine-learning classifier that can localise torsional friction for a given drill string length and diameter, where friction localisation labels are known (source). As the length or diameter of the drill string are altered in the field, transfer learning is utilised to map the classifier from the labelled (source) scenario onto these unlabelled (target) scenarios. As a result, transfer learning improves the performance of the classifier when applied to the target data, and increases the domain of validity for the classifier. The performance of the classifier, and therefore its suitability to new drill-string configurations, is estimated by utilising two different distance metrics between the source and a proposed target dataset.