Newborn screening (NBS) for severe combined immunodeficiency (SCID), X-linked agammaglobulinemia (XLA), and spinal muscular atrophy (SMA) enables early diagnosis and intervention, significantly improving patient outcomes. Advances in real-time polymerase chain reaction (PCR) technology have been instrumental in facilitating their inclusion in NBS programs. We employed multiplex real-time PCR to simultaneously detect T-cell receptor excision circles (TRECs), kappa-deleting recombination excision circles (KRECs), and the absence of the survival motor neuron (SMN) 1 gene in dried blood spots from 103,240 newborns in Zhejiang Province, China, between July 2021 and December 2022. Of all the samples, 122 were requested further evaluation. After flow cytometry evaluation and/or genetic diagnostics, we identified one patient with SCID, two patients with XLA, nine patients with SMA [one of whom also had Wiskott-Aldrich Syndrome (WAS)], and eight patients with other medical conditions. The positive predictive values (PPVs) of NBS for SCID, XLA, and SMA were 2.44%, 2.78%, and 100%, respectively. The estimated prevalence rates in the Chinese population were 1 in 103,240 for SCID, 1 in 51,620 for XLA, and 1 in 11,471 for SMA. This study represents the first large-scale screening in mainland China using a TREC/KREC/SMN1 multiplex assay, providing valuable epidemiological data. Our findings suggest that this multiplex assay is an effective screening method for SCID, XLA, and SMA, potentially supporting the universal implementation of NBS programs across China.
Read full abstract