Multifunctional polymers are highly desirable for developing smart materials in medical applications. This study proposed a facile strategy to fabricate a new multifunctional poly(ether‐urethane) incorporating disulfide bonds and phenol-urethane bonds (PEU−TS). The distinctive feature of the designed PEU−TS elastomers was the presence of abundant phenolic hydroxyl groups, dynamic aromatic disulfide bonds, phenol-urethane bonds, and multiple H-bonds between urethane groups and tannic acid (TA) molecules, which endowed the materials with superior antibacterial and antioxidative activities, self‐healing capabilities, and shape memory functions. Furthermore, the phenol-carbamate crosslinked networks enhanced the tensile properties and improved the biostability of the elastomers. Biocompatibility evaluation further demonstrated that networked PEU−TS composites possessed favorable cell viability and high cytocompatibility. The multifunctional PEU−TS elastomers with robust tensile properties hold great potential for application in durable implants and chronic wound dressings. This elaborate design could inspire the development of multifunctional PU materials over wide medical applications.