Bisphenol A (BPA), a pervasive substance in our daily lives and livestock excreta, poses significant threats due to its infiltration into foods and water sources. BPA has adverse impacts on male reproductive function, particularly affecting the critical Sertoli (ST) cells that play a pivotal role in the process of spermatogonia differentiating into spermatozoa. In this study, we examined the prevalence of BPA within the pig industry and delved into the impact of BPA exposure on the motility of boar sperm, the function of pig ST cells, as well as the underlying molecular mechanisms involved. This study revealed spatial disparities in the global distribution of BPA and its analogue contamination, utilizing data compiled from 130 comprehensive studies. The average concentration of BPA found in pig feed ranges from 9.7 to 47.9 μg/kg, while in serum, it averages between 55.1 and 75.6 ng/L. The BPA concentration in feed exhibits a negative correlation with sperm viability and the percentage of progressive motile spermatozoa. Exposure to BPA reduced sperm motility in boar and ST cell activity at both 6 and 24 h. The transcriptome analysis revealed that, compared to untreated control cells, endoplasmic reticulum stress (ERS)-related genes were upregulated in ST cells exposed to BPA at 6 and 24 h. This activation of ERS in ST cells was mediated by receptor protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring protein-1α (IRE1α), and activating transcription factor 6 (ATF6). Additionally, BPA exposure triggered oxidative stress and a proinflammatory response mediated by the transcription factor NF-κB, accompanied by an increase in downstream proinflammatory cytokines. BPA exposure also led to apoptosis in ST cells and upregulated the expression levels of pro-apoptosis proteins. However, inhibiting ERS activity with 4-PBA attenuated the BPA-induced inflammatory response and apoptosis in ST cells. Our findings suggest that BPA induced apoptosis and inflammatory response in porcine ST cells through persistent activation of ERS, thereby compromising the normal function of these cells.