In this study, we uncovered the novel mechanism of IL-1α-mediated downregulated in adenoma (DRA) (SLC26A3) downregulation in the context of Brachyspira spp.-induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MAPK-activated protein kinase 2 (MAPKAPK-2 also referred as MK-2) showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. In addition, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signaling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signaling driving IL-1α expression, which activates IL-1R1 causing DRA downregulation while also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion, we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira-induced diarrhea. In addition, these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.NEW & NOTEWORTHY The diarrheal disease caused by the two infectious spirochete spp. B. hyodysenteriae and B. hampsonii reduced the expression of DRA (SLC26A3), a major Cl-/HCO-3 exchanger involved in Cl- absorption. This is attributed to the upregulation of IL-1α driven by p38 MAPK. This work also describes a potential new mechanism in inflammatory diseases while showing the importance of IL-1α in maintaining DRA levels.
Read full abstract