Laser output power can be significantly enhanced by a double-cladding fiber, as it possesses a large area of inner-cladding for pumping. However, the coupling efficiency of the double-cladding fiber (DCF) is impacted by the shape of the inner cladding. In this study, the simulation results showed that, the hexagonal inner cladding fiber exhibits the highest absorption efficiency of 94.07 % among the fibers with various typical shapes using the three-dimensional ray tracing method at a length of 100 mm. For the experiments, a type of fluorotellurite (TBY, TeO2-BaF2-Y2O3) glass was chosen for its high capacity of rare-earth ions adoption. Subsequently, a finely structured erbium-doped hexagonal DCF was fabricated based on the hot-extrusion method for the first time, with a minimum loss of 1.25 dB/m at 1310 nm. Additionally, the coupling efficiency of the hexagonal DCF was recorded to be 39.47 % at a fiber length of 53 cm, based on the energy distribution experiment. The damage threshold of the hexagonal DCF at 980 nm could be increased to above 26.5 W, nearly doubling that of the single-cladding fiber. Furthermore, a wider fluorescence spectrum with a full width at half maximum (FWHM) of 30 nm was demonstrated by the hexagonal double-cladding fiber, which indicates its potential for high-power laser applications.
Read full abstract