Here we report an optical fiber sensor capable of performing strain-insensitive simultaneous measurement of bending and temperature using a long-period fiber grating (LPFG) inscribed on doubleclad fiber (DCF) with a CO₂ laser at ˜10.6 μm. The LPFG inscribed on DCF, referred to as a DC-LPFG, was fabricated by scanning CO₂ laser pulses on an unjacketed DCF with a specific period. Due to co-directional mode coupling, the fabricated DC-LPFG has discrete attenuation bands widely distributed over hundreds of nanometers. Among these wavelength-dependent loss dips, adjacent two dips with different resonance wavelengths were selected as sensor indicators for the measurement of bending and temperature. For these two indicator dips designated as dips A and B, their bending and temperature responses were investigated in a curvature range of 4.90 to 21.91 m-1 and a temperature range of 30 to 110 °C. With increasing bending applied to the DC-LPFG at room temperature, dips A and B showed different blue shifts. The bending sensitivities of dips A and B were measured to be approximately -0.77 and 0.51 nm/m-1, respectively. Unlike the bending response, they showed red shifts of different amounts with increasing ambient temperature, while the sensor head (i.e., the DC-LPFG) remained straight without any applied bending. The temperature sensitivities of dips A and B were measured to be ˜0.094 and ˜0.078 nm/°C, respectively. Owing to their linear and independent responses to bending and temperature, bending and temperature changes applied to the DC-LPFG could be simultaneously estimated from the measured wavelength shifts of the two indicator dips using their pre-determined bending and temperature sensitivities. Moreover, in a strain range of 0 to 2200 με (step: 200 με), strain-induced spectral variations of dips A and B were also measured, and the strain sensitivities of dips A and B were evaluated as approximately -0.028 and -0.013 pm/με, respectively. These strain-induced wavelength shifts were so small that they had little effect on the measurement results of bending and temperature. Thus, it is concluded that the fabricated DC-LPFG can be employed as a cost-effective sensor head for strain-insensitive separate measurement of bending and temperature.