The milk quality and characteristics of the local Gharbi sheep and autochthonous goat population were studied and compared to those of the local Maghrebi camel. Milk samples from 378 lactating animals raised in the Tunisian oasis region were obtained and processed for various physicochemical compositions (pH, density, acidity, dry matter, fat, protein, lactose, casein, ash, and casein-protein ratio), mineral concentrations (Ca, P, Na, and K), and bacteriological properties (total mesophilic aerobic bacteria (TMAB), total coliform count (TCC), lactic acid bacteria (LAB), sulfite-reducing Clostridium (CSR), yeast and molds (Y/M), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Salmonella) using standard methods. Milk from sheep breeds had a higher average of all physical parameters (pH, density, and dornic acidity) than milk from goat species. The sheep population produced milk with a similar pH to the camel population, but with a higher density and acidity content. The pH and acidity were higher in Neggas than in goat species, while density was similar in both. For chemical composition, the results showed significant heterogeneity in milk content across all species. Except for the casein-protein ratio, which favors goat species, the analysis indicates that sheep species were superior to populations of goats and camels in all chemical compositions. The present results showed considerable variation in the mineral content of milk from different species. The levels of calcium and phosphorus are higher in sheep than in goat and camel milk. Compared to small ruminants, milk from camels is the richest in Na and K. Additionally, more calcium is present in the milk of camels than that of goats. Goat milk, the lowest in Ca and Na, contains more P than camel milk and more K than sheep's milk on average. The poorest microbial quality was that of camel milk for all bacterial counts. Based on TMAB, TCC, and E. coli counts, the microbiological quality of goat milk was higher than that of ovine milk, while ovine milk had better quality based on LAB, Y/M, and S. aureus values. For Escherichia coli and Staphylococcus aureus, there were no significant variations between the species studied. Results showed that all milk samples studied were completely free of two dangerous pathogens, Salmonella and sulfite-reducing Clostridium. The bacteriological quality of small ruminant's milk was acceptable and met the regulatory limits set by Tunisian dairy legislation. Regarding camel milk, the microbial analysis revealed poor quality that exceeds standard criteria.
Read full abstract