BackgroundImproved ablation catheter–tissue contact results in more effective ablation lesions. Respiratory motion causes catheter instability, which impacts durable pulmonary vein isolation (PVI). ObjectivesThis study sought to evaluate the safety and efficacy of a novel ablation strategy involving prolonged periods of apneic oxygenation during PVI. MethodsWe conducted a multicenter, prospective controlled study of 128 patients (mean age 63 ± 11 years; 37% women) with paroxysmal atrial fibrillation undergoing PVI. Patients underwent PVI under general anesthesia using serial 4-minute runs of apneic oxygenation (apnea group; n = 64) or using standard ventilation settings (control group; n = 64). Procedural data, arterial blood gas samples, catheter position coordinates, and ablation lesion characteristics were collected. ResultsBaseline characteristics between the 2 groups were similar. Catheter stability was significantly improved in the apnea group, as reflected by a decreased mean catheter displacement (1.55 ± 0.97 mm vs 2.25 ± 1.13 mm; P < 0.001) and contact force SD (4.9 ± 1.1 g vs 5.2 ± 1.5 g; P = 0.046). The percentage of lesions with a mean catheter displacement >2 mm was significantly lower in the apnea group (22% vs 44%; P < 0.001). Compared with the control group, the total ablation time to achieve PVI was reduced in the apnea group (18.8 ± 6.9 minutes vs 23.4 ± 7.8 minutes; P = 0.001). There were similar rates of first-pass PVI, acute PV reconnections and dormant PV reconnections between the two groups. ConclusionsA novel strategy of performing complete PVI during apneic oxygenation results in improved catheter stability and decreased ablation times without adverse events. (Radiofrequency Ablation of Atrial Fibrillation Under Apnea; NCT04170894)
Read full abstract