High-frequency ultrasound (HFUS; >30 MHz) Doppler imaging has been widely used in the imaging of small animals and humans because of its high resolution. Vector Doppler imaging (VDI) has certain advantages for visualizing complex flow patterns independent of the Doppler angle. However, no commercial HFUS VDI system is currently available; therefore, several studies have connected an ultrasound research platform (Verasonics Vantage 256) with an HFUS array transducer for HFUS VDI. Unfortunately, the maximum frame rate of this system is only 10 kHz at an operational frequency of 40 MHz because of limitations related to data transmission hardware, thereby restricting the maximum detectable velocity of Doppler measurements. To address this drawback, in the present study, an electrocardiography (ECG)-gating-based HFUS VDI system was developed to avoid Doppler flow aliasing in data acquisition by ultrasound research platform at its maximum frame rate of 10 kHz. The developed method aligns all tilted plane waves with the ECG R-wave, which avoids the trade-off between frame rate and tilted angles number in conventional VDI. The performance of the proposed data acquisition method in HFUS VDI was verified using a steady-flow phantom, for which estimation errors were less than 10% under different flow settings. In animal studies, peak flow velocities in the carotid artery, left ventricle, and aortic arch of wild-type mice were measured (approximately 55, 655, and 765 mm/s, respectively). Also, the HFUS VDI from the mitral regurgitation mice model was obtained to present the complex flow patterns through the proposed method. In contrast to the conventional method, no Doppler aliasing occurs in the proposed method because the frame rate is sufficient. The experimental results indicate the developed HFUS VDI has the potential to become a useful tool for vector flow visualization in small animals, even under a high flow velocity.
Read full abstract