The advancement of electrode materials is essential for addressing the energy and biomedical challenges. A multi-functional approach was employed to create a new electrode material of cobalt oxide-embedded nitrogen-doped porous graphene (Co3O4@NpG) for sensing and energy storage applications. In the present study, we have fabricated a new electrochemical sensing platform based on Co3O4@NpG. The sensing performance and selective detection capability of the demonstrated sensor was optimized and tested by determining dopamine (DA), uric acid (UA), and ascorbic acid (AA) simultaneously in analyte fortified biological samples. The sensing response is noticed to be linearly dependent upon the concentration of AA, DA, and UA in the range of 0.1–450, 0.1–502, and 0.2–396 μM, respectively. This material also showed good electrochemical energy storage performance when assessed as a supercapacitor electrode. The Co3O4@NpG electrode material showcased a remarkable specific capacitance of 314.58 Fg−1, an energy density of 10.06 Wh kg−1 at a power density of 240 Wkg−1 at 0.5 Ag−1, in a 6 M KOH electrolyte, along with excellent long-term cycling stability. Hence, the material Co3O4@NpG stands out as a promising multifunctional electrode candidate, excelling in the precise simultaneous detection of critical biomolecules besides exhibiting superior energy storage performance.
Read full abstract