In order to study the neuroprotective mechanism of cinnamaldehyde on reserpine-induced Parkinson's disease(PD) rat models, 72 male Wistar rats were randomly divided into blank group, model group, Madopar group, and cinnamaldehyde high-, medium-, and low-dose groups. Except for the blank group, the other groups were intraperitoneally injected with reserpine of 0.1 mg·kg~(-1) once every other morning, and cinnamaldehyde and Madopar solutions were gavaged every afternoon. Open field test, rotarod test, and oral chewing movement evaluation were carried out in the experiment. The brain was taken and fixed. The positive expression of dopamine receptor D1(DRD1) was detected by TSA, and the changes in neurotransmitters such as dopamine(DA) and 3,4-dihydroxyphenylacetic acid(DOPAC) in the brain were detected by enzyme-linked immunosorbent assay(ELISA). The protein and mRNA expression levels of tyrosine hydroxylase(TH) and α-synuclein(α-Syn) in substantia nigra(SN) were detected by RT-PCR and Western blot. The results showed that after the injection of reserpine, the hair color of the model group became yellow and dirty; the arrest behavior was weakened, and the body weight was reduced. The spontaneous movement and exploration behavior were reduced, and the coordination exercise ability was decreased. The number of oral chewing was increased, but the cognitive ability was decreased, and the proportion of DRD1 positive expression area in SN was decreased. The expression of TH protein and mRNA was down-regulated, and that of α-Syn protein and mRNA was up-regulated. After cinnamaldehyde intervention, it had an obvious curative effect on PD model animals. The spontaneous movement behavior, the time of staying in the rod, the time of movement, the distance of movement, and the number of standing times increased, and the number of oral chewing decreased. The proportion of DRD1 positive expression area in SN increased, and the protein and mRNA expression levels of α-Syn were down-regulated. The protein and mRNA expression levels of TH were up-regulated. In addition, the levels of DA, DOPAC, and homovanillic acid(HVA) neurotransmitters in the brain were up-regulated. This study can provide a new experimental basis for clinical treatment and prevention of PD.
Read full abstract