The Hydromagnetic desalination (HMD) system is a continuous process with several advantages, including a high water recovery ratio, and can be favored economically by producing several industrial byproducts instead of discharging the highly concentrated brine to the environment. In the current work, the ions concentration in the Electrodialysis (ED) technique is simulated using COMSOL Multiphysics V.5.2 software. The ED cell simulated in this paper contains two selective membranes (anion and cation) with a width of 0.25 mm each. The salt is to be taken away in the middle domain. The cell operation has been simulated to separate the sodium and chlorine ions from the HMD brine waste solution at 40 or 55ºC temperatures at different voltages and concentrations. In this two-dimensional model, the Nernst-Plank equation has been used to describe ion flux and charge transport in the electrolyte solution. Secondary current distribution theory and the electroneutrality condition have been used in the mathematical model. Finally, Donnan equations have been used to provide the exact fulfillment of boundary conditions for constant voltage mode. The simulation shows that the highest efficiency is obtained at high temperatures and voltage with the lowest feed concentration. Finally, the results have been validated using experimental data from the literature, and a satisfying agreement has been found.
Read full abstract