We use a 16-month-long, 20 Hz wind data from a mooring deployed in the Bay of Bengal (BoB) to study the characteristics of turbulent wind stress (u′w′)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime})$$\\end{document} events in the marine atmospheric boundary layer (MABL). Quadrant analysis of the motion-corrected u′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}$$\\end{document} and w′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${w}{\\prime}$$\\end{document} suggests that sweep and ejections, representing downward stress transfer into the ocean, dominate the u′w′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime}$$\\end{document} (~ 140%). In comparison, outward and inward interactions representing an upward stress transfer into the atmosphere provide the counter-contribution (~ 40%). We found a wind speed (ws) dependency on stress transfer for ws > 3 m/s, while for low ws, the swell-dominated ocean state modulates the u′w′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime}$$\\end{document} with a significant reverse stress transfer into the atmosphere, especially during intermonsoon periods. It is found that for weak winds (ws\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ws$$\\end{document}< 3 m/s), the number of turbulent events (N) is less, but they frequently repeat with more considerable flux per event (f^)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\widehat{f})$$\\end{document}, with outward and inward interactions (sweeps and ejections) dominating during intermonsoon periods (monsoon periods). For medium to strong winds, sweeps and ejections dominate u′w′.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime}.$$\\end{document} Ejections are found to be the most efficient method of stress transfer in the BoB, contributing 80% of u′w′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime}$$\\end{document}, compared to sweeps contributing ~ 60% and interaction processes contributing ~ − 20% each to the u′w′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${u}{\\prime}{w}{\\prime}$$\\end{document}. Though the duration of sweep events is larger than ejections and with comparable flux energy per event (f^\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\widehat{f}$$\\end{document}), the larger number N of ejection events makes it the dominant stress transfer mechanism in the Bay in all seasons.
Read full abstract