Macula is the part of retina responsible for sharp and clear vision. Macular edema is caused by the accumulation of intraretinal fluid (IRF) in the macula, which is further distinguished by the compromised integrity of the blood-retinal barrier, particularly evident in the retinal vasculature. This results in swelling, that may lead to vision impairment and is the dominant sign of several ocular diseases, including age-related macular degeneration, diabetic retinopathy, etc. Quantitative analysis of the fluid regions in macular edema helps in ascertaining the severity as well as the response to treatment of the diseases. Optical coherence tomography (OCT) is a major tool used by ophthalmologists for visualizing edema. The prevalent practice for diagnosing and treating macular edema involves measuring Central Retinal Thickness (CRT). Segmenting the IRF in OCT images offers the potential for a more accurate and better quantification of macular edema. This paper proposes a novel method combining convolutional neural network (CNN) and active contour model for segmenting the IRF to ascertain the severity of macular edema. The IRF region is initially segmented using an encoder-decoder architecture. Contour evolution is then performed on this segmented image to demarcate the IRF boundaries. The advantage of the method is that it does not require precisely labeled images for training the CNN. A comparison of the experimental results with models employing CNN alone and with other state-of-the art methods demonstrates the superior performance and consistency of the proposed method.
Read full abstract