BackgroundInflammation plays a significant role in initiating and sustaining rheumatoid arthritis (RA). Acacetin, a natural flavonoid compound, exhibits excellent anti-inflammatory effects specifically for RA. However, its relevant targets and molecular mechanisms remain to be elucidated. PurposeThis study aims to investigate the mechanism of acacetin in the therapeutic efficacy of acacetin in RA and search for new therapeutic options for RA treatment. MethodsA collagen-induced RA mouse model was established to evaluate the therapeutic effect of acacetin. Acacetin functional probes were synthesized to capture potential target proteins in RAW264.7 cells. Various small molecule-protein interaction methods were conducted to verify the binding of acacetin to target protein. Molecular docking and site directed mutagenesis tests were performed to analyze the specific binding sites. Co-immunoprecipitation, immunofluorescence assay and western blot were engineered to explore the effect of acacetin on COX-2 degradation by targeting HSP90. ResultsAcacetin specifically binds to the ATP domain of HSP90, to facilitate the dissociation between HSP90 and COX-2, inducing the ubiquitin-degradation of COX-2 in macrophages. Acacetin suppressed the production of pro-inflammatory cytokines, as well as inflammatory related pathways, exerting excellent anti-inflammatory effects in RA. ConclusionsThis research proved that acacetin, a novel HSP90 ATPase inhibitor, inhibits the functional folding of the client protein COX-2, promoting its ubiquitin degradation for anti-inflammation. Targeting HSP90 is a viable strategy to inhibit inflammation, affording a distinct way to managing joint inflammation and pains associated with RA.