Adaptability is a distinguishing feature of the human species: We thrive as hunter-gatherers, farmers, and urbanites. What properties of our brains make us highly adaptable? We review neuroscience studies of sensory loss, language acquisition, and cultural skills (reading, mathematics, programming). The evidence supports a flexible specialization account. On the one hand, adaptation is enabled by evolutionarily prepared flexible learning systems, both domain-specific social learning systems (e.g., language) and domain-general systems (frontoparietal reasoning). On the other hand, the functional flexibility of our neural wetware enables us to acquire cognitive capacities not selected for by evolution. Heightened plasticity during a protracted period of development enhances cognitive flexibility. Early in life, local cortical circuits are capable of acquiring a wide range of cognitive capacities. Exuberant cross-network connectivity makes it possible to combine old neural parts in new ways, enabling cognitive flexibility such as language acquisition across modalities (spoken, signed, braille) and cultural skills (math, programming). Together, these features of the human brain make it uniquely adaptable.
Read full abstract