AbstractMobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time‐synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time‐synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab‐scale experiment for long‐span bridges. In the lab‐scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross‐spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.
Read full abstract