Photochemical degradation acts as the principal sink for methylmercury (MeHg) in surface water, which is regulated by light and solution matrix (especially the presence of dissolved organic matter, DOM). The spectral composition of light irradiation and the light absorption properties of reaction media (often exerted by DOM) are important in MeHg photodegradation, which has not yet been clearly resolved. Aiming to understand the role of light in MeHg photodegradation from the perspectives of both light irradiation and absorption, we investigated the photodegradation of MeHg under different simulated sunlight sources, with and without DOM model compounds of different molecular structures. The results show that the photodegradation of MeHg under different sunlight irradiation yields distinct first-order date constant, mainly due to the slight difference in UVB composition. The degradation of MeHg without DOM under a light source with high intensity in the UV region and no MeHg degradation under the UV-filtered light even in the presence of DOM showed the importance of UV lights in MeHg photodegradation. The use of ultrapure water as a reaction medium may be subject to MeHg loss through vessel adsorption, not just photolysis. Additionally, this work found that the type and position of coexisting substituents on aromatic thiols play a critical role in improving the photodegradation of MeHg, following amino > hydroxyl > carboxyl, para > meta > ortho. Based on the characterization of ultraviolet-visible absorption spectra and our previous work, it was concluded that the presence of DOM could induce red-shift in light absorption and reduce the electronic transition energy of the CHg bond, facilitating MeHg photodegradation. The structures of DOM affect the light absorption properties, which are related to MeHg photodegradation.