Vibrio parahaemolyticus is the main pathogen causing acute hepatopancreatic necrotic disease in crustaceans. To elucidate the epigenetic regulatory mechanism of crustacean resistance to V. parahaemolyticus infection, we conducted artificial infection studies on Portunus trituberculatus. The results showed that the mortality rate reached the highest at 12 h of artificial infection, which was 23.69 %. At 72 h after V parahaemolyticus infection, the expression level of DNA demethylase (ten-eleven-translocation protein) Tet was significantly decreased, the expression of DNA methyltransferase Dnmt3B fluctuated significantly. Based on the differential expression levels of Tet and Dnmt3B. We depict for DNA methylation profiles of the whole genome of P. trituberculatus at single-base resolution by using whole-genome bisulfite sequencing (WGBS) on hemolymph tissues. The overall DNA methylation level was low at 2.16% in P. trituberculatus hemolymph. A total of 2,590 differentially methylated regions (DMRs) were identified, of which 1,329 were hypermethylated and 1,261 were hypomethylated, and 1,389 genes were annotated in these DMRs. Differently methylated genes (DMGs) were significantly enriched in ribosomes (KO03010), protein kinases (KO01001), cell cycle (HSA04110), endocrine resistance (HSA01522) and FoxO signaling pathway (KO04068). Finally, we selected six differentially methylated genes for quantitative analysis. The results showed that DNA methylation not only has a negative regulatory effect on gene expression, but also has a positive regulatory effect. These results indicated that DNA methylation in the regulation of genes involved in immune responses contributes to the resistance of P. trituberculatus to V. parahaemolyticus, which is valuable for understanding how crustaceans regulate the innate immune system to defend against bacterial infections.