This study aimed to compare the radiosensitizing effect of the PARP inhibitor, Olaparib, between proton and X-rays irradiations in BRCA-proficient breast cancer (BC) cells. Two BRCA-proficient BC cell lines, MDA-MB-231 and T47D BC, were used. Cell proliferation was assessed using the CCK-8 assay, and radiosensitivity was determined through the clonogenic survival assay. Flow cytometry was employed to analyze cell cycle distribution and apoptosis. The kinetics of DNA damage repair were evaluated using γH2AX immunofluorescence imaging and the comet assay. Tumor spheroid assays were conducted to test radiosensitivity in a three-dimensional culture condition. Olaparib sensitized both MDA-MB-231 and T47D cells to proton and X-ray irradiation in the clonogenic assay. MDA-MB-231 cells exhibited a higher dose enhancement factor for Olaparib than T47D cells. Olaparib increased radiation-induced G2/M cell cycle arrest and apoptosis specifically in MDA-MB-231 cells. γH2AX immunostaining and the comet assay showed Olaparib augmented radiation-induced DNA damage and apoptosis. The enhancement effect of Olaparib was more pronounced in proton irradiation than in X-ray irradiation, particularly in MDA-MB-231 cells than T47D cells. Both radiation and Olaparib dose-dependently inhibited spheroid growth in both cell lines. The synergy scores demonstrated that Olaparib interacted more strongly with protons than X-rays. The addition of an ATR inhibitor further enhanced Olaparib-induced proton radiosensitization in MDA-MB-231 cells. This study found that Olaparib enhanced radiation efficacy in BRCA-proficient breast cancer cells, with a more pronounced effect observed with proton irradiation compared to X-ray irradiation. Combining Olaparib with an ATR inhibitor increased the radiosensitizing effect of protons.
Read full abstract