Osteoporosis (OP) is a metabolic bone disease characterized by progressive decline of bone mass and bone quality, leading to bone fragility and an increased risk of fracture. The osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is crucial to maintain the balance of osteoblast and osteoclast. Bioinformatics prediction indicates that ZFP36 ring finger protein (ZFP36), an RNA-binding protein, is a potential target of OP. Herein, we sought to probe the regulatory role and mechanisms of ZFP36 in the progression of OP. Overexpression of ZFP36 enhanced osteoblast viability, differentiation and mineralization of human BMSCs (hBMSCs). RNA immunoprecipitation qPCR (RIP-qPCR) assays demonstrated that ZFP36 could inhibit the translation of JUN, which was also verified with dual luciferase reporter gene assay. Furthermore, administration with T-5224, a transcription factor c-Fos/activator protein (AP)-1 inhibitor, which specifically inhibits the DNA binding activity of c-Fos/JUN, abolished the effect of ZFP36 knockdown on the behaviors of hBMSCs, suggesting that ZFP36 might promotes osteogenic differentiation through regulating JUN. These findings provide insights into the progression and a potential therapeutic target of OP.
Read full abstract