Recently, some new sequence spaces ℓp(Aα)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\ell _{p}(\\mathfrak{A}^{\\alpha })$\\end{document}(0<p<∞)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(0< p<\\infty )$\\end{document}, c0(Aα)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$c_{0}(\\mathfrak{A}^{\\alpha })$\\end{document}, c(Aα)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$c(\\mathfrak{A}^{\\alpha })$\\end{document}, and ℓ∞(Aα)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\ell _{\\infty }(\\mathfrak{A}^{\\alpha })$\\end{document} have been studied by Yaying et al. (Forum Math., 2024, https://doi.org/10.1515/forum-2023-0138) as matrix domains of Aα=(an,vα)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathfrak{A}^{\\alpha }=(a_{n,v}^{\\alpha })$\\end{document}, where am,vα={vαρ(α)(m),v∣m,0,v∤m,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ a_{\\mathfrak{m},v}^{\\alpha }=\\left \\{ \ extstyle\\begin{array}{c@{\\quad}c@{\\quad}c} \\dfrac{v^{\\alpha }}{\\rho ^{(\\alpha )}(\\mathfrak{m})} & , & v\\mid \\mathfrak{m}, \\\\ 0 & , & v\ mid \\mathfrak{m},\\end{array}\\displaystyle \\right . $$\\end{document}and ρ(α)(m):=\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\rho ^{(\\alpha )}(\\mathfrak{m}):=$\\end{document} sum of the αth\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha ^{\ ext{th}}$\\end{document} power of the positive divisors of m∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathfrak{m}\\in \\mathbb{N}$\\end{document}. They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes.This article deals with some geometric properties of these sequence spaces.
Read full abstract