The subject of study in this article is the methods of parametric diagnostics of the technical condition of the units of an air vehicle's hydraulic and fuel systems, which make it possible to ensure the established reliability indicators of these systems throughout their entire life cycle. This work aims to analyze the existing literature on the methods of parametric diagnostics of hydraulic units, determine the basic requirements for the development of diagnostic methods for units of hydraulic, and fuel systems. The objective of the study is to classify the existing methods of parametric diagnostics, applied primarily to hydraulic systems, to analyze the advantages and disadvantages of the algorithms under consideration based on the requirements for diagnostic algorithms established by the authors, and to assess the possibility of effectively using these methodologies to diagnose the technical condition of a complex hydraulic distribution unit. The authors of this work formed the main requirements for the methods of diagnosing a hydraulic and fuel system's units based on the nature of the detected defects, the experience of using diagnostic algorithms, as well as the requirements of existing standards and scientific publications analysis. The authors developed a classification of parametric diagnostic algorithms to systematize existing works. This paper describes the main features and differences between diagnostic algorithms based on methods for identifying a mathematical model of an object and diagnostic algorithms in the space of measured parameters. Methods for forming diagnostic models of hydraulic units have been analyzed, such as the state-space model, the Hammerstein model, the Volterra model, the ARX model, and the matrix of influence coefficients. Established analysis of the application of defect identification algorithms such as a divided difference filter (DDF), a radial basis functions neural network RBF, and a cosine distance method. As a result, the advantages and disadvantages of the monitored diagnostic algorithms were identified and the main tasks for developing an algorithm for parametric diagnostics of the technical condition of a complex hydraulic distribution unit were formulated.
Read full abstract