In a two-hop system with multiple amplify-and-forward (AF) relays, the instantaneous channel state information (CSI) is usually required at the relays to achieve a coherent combining at the destination. In this paper, we investigate the design of non-coherent relaying systems, where no CSI is available at the relays. It will be shown that non-coherent relaying can achieve the optimal diversity and multiplexing tradeoff (DMT) of coherent relaying systems with no penalty in the coding length, but incurs a loss of combining gain. To illustrate the practicality of non-coherent relaying, we propose a simple spreading-based non-coherent relaying scheme which achieves the optimal diversity gain. However, the spreading scheme demonstrates a unique non-coherent penalty, namely, the inclusion of one non-coherent relay may introduce negative contribution to the receive SNR. To handle this penalty, a distributed relay selection scheme, which can achieve a better outage performance with less energy, is proposed.
Read full abstract