We aimed to investigate the potential role of biomarkers of transmethylation, oxidative stress, and mitochondrial dysfunction in children with Autism Spectrum Disorder (ASD) by comparing them with that of typically developing children (TDC) controls. We also tried to correlate them with severity of autism, sensory issues, behavioural comorbidities and developmental quotients 119 with ASD and 52 age and sex matched typically developing children (TDC) controls were enrolled excluding those with chronic-illness or on any antioxidant therapy/multivitamins/anti-epileptic drugs. Median levels of biomarkers- serum homocysteine, cysteine, methionine, urine uric acid-to-creatinine ratio, arterial lactate, serum vitamin E, vitamin B12, folate, Nε-carboxymethyllysine, Nω- carboxymethylarginine (CMA), dityrosine and MTHFR C677T polymorphism were calculated. Children with ASD were further characterised using Childhood Autism Rating Scale-2, Childhood behavioural checklist, child sensory profile 2 caregiver questionnaire, Developmental Profile 3 for any correlation with the various biomarker levels. The median level of serum homocysteine in ASD group was 9 μmol/L(Range, 7- 16μmol/L), which was significantly higher than controls 7 μmol/L(Range, 4- 11μmol/L)(p=0.01). The prevalence of hyper-homocystinemia(>15μmol/L) was 13.4% in ASD as compared to 3.8% in controls with a significant difference(p=0.04). Dityrosine level was higher among ASD children when compared to TDC (9.8 vs 2.2 counts per second(cps), p<0.001). No significant correlation was found between prevalence of hyperhomocysteinemia and severity of autism/DQ/behavioural issues. No significant difference was found between the median levels of other biomarkers. Results support possible role of transmethylation defects and oxidative stress in ASD pathogenesis. Further studies are warranted for a better understanding of ASD pathogenesis.