A new methodology for mitigation of the wheel squealing is proposed and investigated based on the dithering control. The idea can be applied in railway lines particularly in urban areas. The idea is clearly presented, and applied to a validated model. A full-scale model including the vehicle, curved track and wheel/rail contact is developed in the time domain to analyze the possibility and level of wheel squeal noise. Comparing the numerical results with a field test, the model is validated in different levels namely i) occurrence, ii) squealing frequency and iii) noise level. Two different approaches are proposed a) dithering of the wheel with piezoelectric patches and b) dithering of the rail with piezoelectric stacks. The noise level as well as the wheel responses is compared after applying the control strategy. A parametric study is carried out and effect of the dithering voltage and frequency on the squealing noise is investigated. It is found that both the strategies perform quite effectively within the saturating threshold of piezoelectric actuators.