Microplastic (MP) pollution in agricultural ecosystems is an emerging environmental concern, with limited knowledge of its transport and accumulation in rural waterbodies. This study investigates the distribution and sources of MP in drainage ditches influenced by pond connectivity, land use, and soil properties within a small catchment in Nanjing, East China. Sediment was collected from ditches in 18 sites across forest, agricultural, horticultural, and urban areas. Using laser-directed infrared spectroscopy (LDIR), 922 MP particles were identified. Six materials were dominant: fluororubber (FR), polyethylene terephthalate (PET), polyurethane (PU), acrylonitrile (ACR), chlorinated polyethylene (CPE), and polyethylene (PE). MP concentrations varied by land use and pond connectivity, with ditches above ponds exhibiting higher counts (1700 particles/kg) than those below (1050 particles/kg), indicating that ponds act as MP sinks. The analysis revealed site-specific MP sources, with FR linked to road runoff and PET associated with agricultural practices. Correlations between MP shape and soil properties showed that more compact and filled shapes were more commonly associated with coarser soils. PE particle size was negatively correlated with organic matter. This study highlights the need for targeted strategies to reduce MP pollution in rural landscapes, such as reducing plastic use, ditch maintenance, and improved road runoff management.