Lenvatinib, a potent inhibitor of multiple tyrosine kinases, including vascular endothelial growth factor receptors 2 and 3, generated unique metabolites after oral administration of [(14)C]lenvatinib (30 mg/kg) to a male cynomolgus monkey. Lenvatinib was found to be transformed to a GSH conjugate, through displacement of an O-aryl moiety, at the quinoline part of the molecule in the liver and kidneys. The GSH conjugate underwent further hydrolysis by γ-glutamyltranspeptidase and dipeptidases, followed by intramolecular rearrangement, to form N-cysteinyl quinoline derivatives, which were dimerized to form disulfide dimers and also formed an N,S-cysteinyl diquinoline derivative. In urine, a thioacetic acid conjugate of the quinoline was also observed as one of the major metabolites of lenvatinib. Lenvatinib is a 4-O-aryl quinoline derivative, and such compounds have been known to undergo conjugation with GSH, accompanied by release of the O-aryl moiety. Because of intramolecular rearrangement in the case of lenvatinib, hydrolysis of the GSH conjugate yielded N-cysteinylglycine and N-cysteine conjugates instead of the corresponding S-conjugates. Because the N-substituted derivatives possess free sulfhydryl groups, dimerization through disulfide bonds and another nucleophilic substitution reaction with lenvatinib resulted in the formation of disulfanyl dimers and an N,S-cysteinyl diquinoline derivative, respectively. Characteristic product ions at m/z 235 and m/z 244, which were associated with thioquinoline and N-ethylquinoline derivatives, respectively, were used to differentiate S- and N-derivatives in this study. On the basis of accurate mass and NMR measurements, a unique metabolic pathway for lenvatinib in monkey and the proposed formation mechanism have been elucidated.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access