An aerobic copper-catalyzed cascade oxidative isomerization/[4+4] cyclization of 2,2'-disubstituted stilbenes is described. Under the mild CuCl/DBED/air catalytic system, various 5,10-heteroatom-containing tetrahydroindeno[2,1-a]indenes were efficiently prepared through the difunctionalizations of alkenes in a highly atom economic manner. Mechanistic investigations suggested the bicyclic product was likely formed through a sequence of rapid single-electron oxidation/[4+4] cyclization from 2,2'-disubstituted stilbene. The antarafacial manner of the thermally allowed [4+4] cyclization was further proven by series of control experiments and density functional theory calculations. Our findings provide an important addition to the aerobic copper-catalyzed oxidative cyclization.
Read full abstract