Real-Time Kinematic Precise Point Positioning (PPP–RTK) is inextricably linked to external ionospheric information. The PPP–RTK performances vary much with the accuracy of ionospheric information, which is derived from different network scales, given different prior variances, and obtained under different disturbed ionospheric conditions. This study investigates the relationships between the PPP–RTK performances, in terms of precision and convergence time, and the accuracy of external ionospheric information. The statistical results show that The Time to First Fix (TTFF) for the PPP–RTK constrained by Global Ionosphere Map (PPP–RTK-GIM) is about 8–10 min, improved by 20%–50% as compared with that for PPP Ambiguity Resolution (PPP-AR) whose TTFF is about 13–16 min. Additionally, the TTFF of PPP–RTK is 4.4 min, 5.2 min, and 6.8 min, respectively, when constrained by the external ionospheric information derived from different network scales, e.g. small-, medium-, and large-scale networks, respectively. To analyze the influences of the optimal prior variances of external ionospheric delay on the PPP–RTK results, the errors of 0.5 Total Electron Content Unit (TECU), 1 TECU, 3 TECU, and 5 TECU are added to the initial ionospheric delays, respectively. The corresponding convergence time of PPP–RTK is less than 1 min, about 3, 5, and 6 min, respectively. After adding the errors, the ionospheric information with a small variance leads to a long convergence time and that with a larger variance leads to the same convergence time as that of PPP-AR. Only when an optimal prior variance is determined for the ionospheric delay in PPP–RTK model, the convergence time for PPP–RTK can be shorten greatly. The impact of Travelling Ionospheric Disturbance (TID) on the PPP–RTK performances is further studied with simulation. It is found that the TIDs increase the errors of ionospheric corrections, thus affecting the convergence time, positioning accuracy, and reliability of PPP–RTK.
Read full abstract